1. Digital PID controller
2. Neural Network
3. Neuro PID controllerÀÇ Àüü ±¸Á¶
4. Simulation °á°ú (No Filter)
5. Digital filters
6. Simulation °á°ú (Filter ¼³Ä¡½Ã)
7. INVERSE MODEL CONTROLLER¿Í ºñ±³
¡¡
1. Structure
,
where,
: constant
2. Learnning Rule (Error-back-propagation)
- ÀϹÝÀûÀÎ Error-back-propagation ¾Ë°í¸®Áò
-Á¦¾î±â¿¡ »ç¿ëµÈ Error-back-propagation ¾Ë°í¸®Áò
3. Algorithm
- Step 0 : Weight ÃʱâÈ(-0.5¡0.5)
- Step 1 : Weight ¼öÁ¤
- Step 2 :
À̸é goto Step 1
1. Exponential filter
: measured
: filtered
- Use of backward difference approximation
for analog filter
: filter constant ¢¡
: Weighted summation!
¢¡ single exponential smoothing
: No filtering ()
: measurement is ignored ()
¡¡2. Moving average filter
J: moving window size
(recursive form) : low pass filter
¡¡ 1. Á¦¾î±â Ãâ·Â¿¡ Exponential filter ¼³Ä¡
- Noise°¡ ¾øÀ»½Ã
- Noise°¡ µé¾î°¥ ½Ã(¡¾0.1)
2. Á¦¾î±â Ãâ·Â¿¡ Moving average filter ¼³Ä¡
7. Inverse model controller¿Í ºñ±³
- 1¹ø° ÇнÀ
- 2¹ø° ÇнÀ